Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.480
Filtrar
1.
Cancer Res ; 84(7): 958-960, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558132

RESUMEN

The extracellular matrix (ECM) has always been studied in the context of the structural support it provides tissues. However, more recently, it has become clear that ECM proteins do more to regulate biological processes relevant to cancer progression: from activating complex signaling pathways to presenting soluble growth factors. In 2009, Ulrich and colleagues provided evidence that the physical properties of the ECM could also contribute to glioblastoma tumor cell proliferation and invasion using tunable hydrogels, emphasizing a role for tumor rigidity in central nervous system cancer progression. Here, we will discuss the results of this landmark article, as well as highlight other work that has shown the importance of tissue stiffness in glioblastoma and other tumor types in the tumor microenvironment. Finally, we will discuss how this research has led to the development of novel treatments for cancer that target tumor rigidity. See related article by Ulrich and colleagues, Cancer Res 2009;69:4167-74.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proliferación Celular , Hidrogeles/química , Microambiente Tumoral
2.
Neurosurg Rev ; 47(1): 136, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561568

RESUMEN

This letter offers a nuanced evaluation of the recent study on single-cell transcriptome analysis of ECM-remodeling meningioma cells. While acknowledging the positive aspects, such as enhanced understanding of tumor heterogeneity and identification of potential therapeutic targets, it also highlights potential limitations, including challenges in data interpretation and validation.The focus on ECM-remodeling may inadvertently overshadow other critical aspects of tumor biology, necessitating a more holistic approach. The abstract concludes by emphasizing the importance of considering the broader context of tumor heterogeneity and microenvironmental influences in future research endeavors to improve clinical outcomes for patients with meningioma and other malignancies.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/patología , Análisis de Expresión Génica de una Sola Célula , Matriz Extracelular/patología , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología
3.
J Cell Mol Med ; 28(8): e18230, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568083

RESUMEN

Liver hepatocellular carcinoma (LIHC) is a highly lethal form of cancer that is among the deadliest cancer types globally. In terms of cancer-related mortality rates, liver cancer ranks among the top three, underscoring the severity of this disease. Insufficient analysis has been conducted to fully understand the potential value of the extracellular matrix (ECM) in immune infiltration and the prognostic stratification of LIHC, despite its recognised importance in the development of this disease. The scRNA-seq data of GSE149614 was used to conduct single-cell analysis on 10 LIHC samples. CellChat scores were calculated for seven cell populations in the descending cohort to investigate cellular communication, while PROGENy scores were calculated to determine tumour-associated pathway scores in different cell populations. The pathway analysis using GO and KEGG revealed the enrichment of ECM-associated genes in the pathway, highlighting the potential role of the ECM in LIHC development. By utilizing the TCGA-LIHC cohort, an ECM-based prognostic model for LIHC was developed using Lasso regression. Immune infiltration scores were calculated using two methods, and the performance of the ECM-related risk score was evaluated using an independent cohort from the CheckMate study. To determine the precise expression of ECM-associated risk genes in LIHC, we evaluated hepatocellular carcinoma cell lines using a range of assays, including Western blotting, invasion assays and Transwell assays. Using single-cell transcriptome analysis, we annotated the spatially-specific distribution of major immune cell types in single-cell samples of LIHC. The main cell types identified and annotated included hepatocytes, T cells, myeloid cells, epithelial cells, fibroblasts, endothelial cells and B cells. The utilisation of cellchat and PROGENy analyses enabled the investigation and unveiling of signalling interactions, protein functionalities and the prominent influential pathways facilitated by the primary immune cell types within the LIHC. Numerous tumour pathways, including PI2K, EGFR and TGFb, demonstrated a close correlation with the involvement of ECM in LIHC. Moreover, an evaluation was conducted to assess the primary ECM-related functional changes and biological pathway enrichment in LIHC. Differential genes associated with ECM were identified and utilised to create prognostic models. The prognostic stratification value of these models for LIHC patients was confirmed through validation in multiple databases. Furthermore, through immune infiltration analysis, it was discovered that ECM might be linked to the irregular expression and regulation of numerous immune cells. Additionally, histone acetylation was mapped against gene mutation frequencies and differential expression profiles. The prognostic stratification efficacy of the ECM prediction model constructed in the context of PD-1 inhibitor therapy was also examined, and it exhibited strong stratification performance. Cellular experiments, including Western blotting, invasion and Transwell assays, revealed that ECM-associated risk genes have a promoting effect on the development of LIHC. The creation of biomarkers for LIHC using ECM-related genes unveiled substantial correlations with immune microenvironmental infiltration and functional mutations in various tumour pathways. This enlightens us to the possibility that the influence of ECM on tumours may extend beyond simply promoting the fibrotic process and the stromal composition of tumours.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Pronóstico , Células Endoteliales , Multiómica , Neoplasias Hepáticas/genética , Matriz Extracelular/genética
4.
Cancer Rep (Hoboken) ; 7(4): e2059, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38639039

RESUMEN

BACKGROUND: Pancreatic cancer (PC) stands out as one of the most formidable malignancies and exhibits an exceptionally unfavorable clinical prognosis due to the absence of well-defined diagnostic indicators and its tendency to develop resistance to therapeutic interventions. The primary objective of this present study was to identify extracellular matrix (ECM)-related hub genes (HGs) and their corresponding molecular signatures, with the intent of potentially utilizing them as biomarkers for diagnostic, prognostic, and therapeutic applications. METHODS: Three microarray datasets were sourced from the NCBI database to acquire upregulated differentially expressed genes (DEGs), while MatrisomeDB was employed for filtering ECM-related genes. Subsequently, a protein-protein interaction (PPI) network was established using the STRING database. The created network was visually inspected through Cytoscape, and HGs were identified using the CytoHubba plugin tool. Furthermore, enrichment analysis, expression pattern analysis, clinicopathological correlation, survival analysis, immune cell infiltration analysis, and examination of chemical compounds were carried out using Enrichr, GEPIA2, ULCAN, Kaplan Meier plotter, TIMER2.0, and CTD web platforms, respectively. The diagnostic and prognostic significance of HGs was evaluated through the ROC curve analysis. RESULTS: Ten genes associated with ECM functions were identified as HGs among 131 DEGs obtained from microarray datasets. Notably, the expression of these HGs exhibited significantly (p < 0.05) higher in PC, demonstrating a clear association with tumor advancement. Remarkably, higher expression levels of these HGs were inversely correlated with the likelihood of patient survival. Moreover, ROC curve analysis revealed that identified HGs are promising biomarkers for both diagnostic (AUC > 0.75) and prognostic (AUC > 0.64) purposes. Furthermore, we observed a positive correlation between immune cell infiltration and the expression of most HGs. Lastly, our study identified nine compounds with significant interaction profiles that could potentially act as effective chemical agents targeting the identified HGs. CONCLUSION: Taken together, our findings suggest that COL1A1, KRT19, MMP1, COL11A1, SDC1, ITGA2, COL1A2, POSTN, FN1, and COL5A1 hold promise as innovative biomarkers for both the diagnosis and prognosis of PC, and they present as prospective targets for therapeutic interventions aimed at impeding the progression PC.


Asunto(s)
Perfilación de la Expresión Génica , Neoplasias Pancreáticas , Humanos , Biomarcadores de Tumor/análisis , Pronóstico , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Biología Computacional , Matriz Extracelular/genética
5.
Phys Biol ; 21(3)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574674

RESUMEN

Uncontrolled growth of tumor cells in confined spaces leads to the accumulation of compressive stress within the tumor. Although the effects of tension within 3D extracellular matrices (ECMs) on tumor growth and invasion are well established, the role of compression in tumor mechanics and invasion is largely unexplored. In this study, we modified a Transwell assay such that it provides constant compressive loads to spheroids embedded within a collagen matrix. We used microscopic imaging to follow the single cell dynamics of the cells within the spheroids, as well as invasion into the 3D ECMs. Our experimental results showed that malignant breast tumor (MDA-MB-231) and non-tumorigenic epithelial (MCF10A) spheroids responded differently to a constant compression. Cells within the malignant spheroids became more motile within the spheroids and invaded more into the ECM under compression; whereas cells within non-tumorigenic MCF10A spheroids became less motile within the spheroids and did not display apparent detachment from the spheroids under compression. These findings suggest that compression may play differential roles in healthy and pathogenic epithelial tissues and highlight the importance of tumor mechanics and invasion.


Asunto(s)
Neoplasias , Esferoides Celulares , Humanos , Colágeno , Matriz Extracelular , Línea Celular Tumoral
6.
Arch Microbiol ; 206(5): 212, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616221

RESUMEN

Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.


Asunto(s)
Bacteriófagos , Biopelículas , Animales , Humanos , Percepción de Quorum , Antibacterianos/farmacología , Matriz Extracelular
7.
J Neural Eng ; 21(2)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572924

RESUMEN

Objective. Artificial nerve scaffolds composed of polymers have attracted great attention as an alternative for autologous nerve grafts recently. Due to their poor bioactivity, satisfactory nerve repair could not be achieved. To solve this problem, we introduced extracellular matrix (ECM) to optimize the materials.Approach.In this study, the ECM extracted from porcine nerves was mixed with Poly(L-Lactide-co-ϵ-caprolactone) (PLCL), and the innovative PLCL/ECM nerve repair conduits were prepared by electrostatic spinning technology. The novel conduits were characterized by scanning electron microscopy (SEM), tensile properties, and suture retention strength test for micromorphology and mechanical strength. The biosafety and biocompatibility of PLCL/ECM nerve conduits were evaluated by cytotoxicity assay with Mouse fibroblast cells and cell adhesion assay with RSC 96 cells, and the effects of PLCL/ECM nerve conduits on the gene expression in Schwann cells was analyzed by real-time polymerase chain reaction (RT-PCR). Moreover, a 10 mm rat (Male Wistar rat) sciatic defect was bridged with a PLCL/ECM nerve conduit, and nerve regeneration was evaluated by walking track, mid-shank circumference, electrophysiology, and histomorphology analyses.Main results.The results showed that PLCL/ECM conduits have similar microstructure and mechanical strength compared with PLCL conduits. The cytotoxicity assay demonstrates better biosafety and biocompatibility of PLCL/ECM nerve conduits. And the cell adhesion assay further verifies that the addition of ECM is more beneficial to cell adhesion and proliferation. RT-PCR showed that the PLCL/ECM nerve conduit was more favorable to the gene expression of functional proteins of Schwann cells. Thein vivoresults indicated that PLCL/ECM nerve conduits possess excellent biocompatibility and exhibit a superior capacity to promote peripheral nerve repair.Significance.The addition of ECM significantly improved the biocompatibility and bioactivity of PLCL, while the PLCL/ECM nerve conduit gained the appropriate mechanical strength from PLCL, which has great potential for clinical repair of peripheral nerve injuries.


Asunto(s)
Matriz Extracelular , Nervio Ciático , Animales , Masculino , Ratones , Ratas , Regeneración Nerviosa/fisiología , Poliésteres/química , Ratas Wistar , Nervio Ciático/fisiología , Electricidad Estática , Porcinos , Andamios del Tejido/química
8.
Biofabrication ; 16(3)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574554

RESUMEN

The anisotropic organization of cells and the extracellular matrix (ECM) is essential for the physiological function of numerous biological tissues, including the myocardium. This organization changes gradually in space and time, during disease progression such as myocardial infarction. The role of mechanical stimuli has been demonstrated to be essential in obtaining, maintaining and de-railing this organization, but the underlying mechanisms are scarcely known. To enable the study of the mechanobiological mechanisms involved,in vitrotechniques able to spatiotemporally control the multiscale tissue mechanical environment are thus necessary. Here, by using light-sensitive materials combined with light-illumination techniques, we fabricated 2D and 3Din vitromodel systems exposing cells to multiscale, spatiotemporally resolved stiffness anisotropies. Specifically, spatial stiffness anisotropies spanning from micron-sized (cellular) to millimeter-sized (tissue) were achieved. Moreover, the light-sensitive materials allowed to introduce the stiffness anisotropies at defined timepoints (hours) after cell seeding, facilitating the study of their temporal effects on cell and tissue orientation. The systems were tested using cardiac fibroblasts (cFBs), which are known to be crucial for the remodeling of anisotropic cardiac tissue. We observed that 2D stiffness micropatterns induced cFBs anisotropic alignment, independent of the stimulus timing, but dependent on the micropattern spacing. cFBs exhibited organized alignment also in response to 3D stiffness macropatterns, dependent on the stimulus timing and temporally followed by (slower) ECM co-alignment. In conclusion, the developed model systems allow improved fundamental understanding of the underlying mechanobiological factors that steer cell and ECM orientation, such as stiffness guidance and boundary constraints.


Asunto(s)
Matriz Extracelular , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Miocardio , Corazón , Fibroblastos
9.
J Biomech Eng ; 146(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38584416

RESUMEN

Aging is a primary risk factor for degenerative tendon injuries, yet the etiology and progression of this degeneration are poorly understood. While aged tendons have innate cellular differences that support a reduced ability to maintain mechanical tissue homeostasis, the response of aged tendons to altered levels of mechanical loading has not yet been studied. To address this question, we subjected young and aged murine flexor tendon explants to various levels of in vitro tensile strain. We first compared the effect of static and cyclic strain on matrix remodeling in young tendons, finding that cyclic strain is optimal for studying remodeling in vitro. We then investigated the remodeling response of young and aged tendon explants after 7 days of varied mechanical stimulus (stress deprivation, 1%, 3%, 5%, or 7% cyclic strain) via assessment of tissue composition, biosynthetic capacity, and degradation profiles. We hypothesized that aged tendons would show muted adaptive responses to changes in tensile strain and exhibit a shifted mechanical setpoint, at which the remodeling balance is optimal. Interestingly, we found that 1% cyclic strain best maintains native physiology while promoting extracellular matrix (ECM) turnover for both age groups. However, aged tendons display fewer strain-dependent changes, suggesting a reduced ability to adapt to altered levels of mechanical loading. This work has a significant impact on understanding the regulation of tissue homeostasis in aged tendons, which can inform clinical rehabilitation strategies for treating elderly patients.


Asunto(s)
Traumatismos de los Tendones , Tendones , Humanos , Ratones , Animales , Anciano , Estrés Mecánico , Tendones/fisiología , Matriz Extracelular , Envejecimiento
10.
NPJ Biofilms Microbiomes ; 10(1): 36, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561371

RESUMEN

Marine ecosystems are influenced by phytoplankton aggregation, which affects processes like marine snow formation and harmful events such as marine mucilage outbreaks. Phytoplankton secrete exopolymers, creating an extracellular matrix (ECM) that promotes particle aggregation. This ECM attracts heterotrophic bacteria, providing a nutrient-rich and protective environment. In terrestrial environments, bacterial colonization near primary producers relies on attachment and the formation of multidimensional structures like biofilms. Bacteria were observed attaching and aggregating within algal-derived exopolymers, but it is unclear if bacteria produce an ECM that contributes to this colonization. This study, using Emiliania huxleyi algae and Phaeobacter inhibens bacteria in an environmentally relevant model system, reveals a shared algal-bacterial ECM scaffold that promotes algal-bacterial aggregation. Algal exudates play a pivotal role in promoting bacterial colonization, stimulating bacterial exopolysaccharide (EPS) production, and facilitating a joint ECM formation. A bacterial biosynthetic pathway responsible for producing a specific EPS contributing to bacterial ECM formation is identified. Genes from this pathway show increased expression in algal-rich environments. These findings highlight the underestimated role of bacteria in aggregate-mediated processes in marine environments, offering insights into algal-bacterial interactions and ECM formation, with implications for understanding and managing natural and perturbed aggregation events.


Asunto(s)
Ecosistema , Fitoplancton , Fitoplancton/metabolismo , Fitoplancton/microbiología , Matriz Extracelular , Matriz Extracelular de Sustancias Poliméricas
11.
Nat Commun ; 15(1): 2806, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561380

RESUMEN

Although heterogeneity of FAP+ Cancer-Associated Fibroblasts (CAF) has been described in breast cancer, their plasticity and spatial distribution remain poorly understood. Here, we analyze trajectory inference, deconvolute spatial transcriptomics at single-cell level and perform functional assays to generate a high-resolution integrated map of breast cancer (BC), with a focus on inflammatory and myofibroblastic (iCAF/myCAF) FAP+ CAF clusters. We identify 10 spatially-organized FAP+ CAF-related cellular niches, called EcoCellTypes, which are differentially localized within tumors. Consistent with their spatial organization, cancer cells drive the transition of detoxification-associated iCAF (Detox-iCAF) towards immunosuppressive extracellular matrix (ECM)-producing myCAF (ECM-myCAF) via a DPP4- and YAP-dependent mechanism. In turn, ECM-myCAF polarize TREM2+ macrophages, regulatory NK and T cells to induce immunosuppressive EcoCellTypes, while Detox-iCAF are associated with FOLR2+ macrophages in an immuno-protective EcoCellType. FAP+ CAF subpopulations accumulate differently according to the invasive BC status and predict invasive recurrence of ductal carcinoma in situ (DCIS), which could help in identifying low-risk DCIS patients eligible for therapeutic de-escalation.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Carcinoma Intraductal no Infiltrante , Receptor 2 de Folato , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Fibroblastos/patología , Fibroblastos Asociados al Cáncer/patología , Matriz Extracelular/patología , Microambiente Tumoral
12.
Nat Commun ; 15(1): 2861, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570505

RESUMEN

Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.


Asunto(s)
Caenorhabditis elegans , Neuroglía , Animales , Caenorhabditis elegans/genética , Astrocitos , Fenómenos Biomecánicos , Proteostasis , Matriz Extracelular/metabolismo , Uniones Intercelulares
13.
Sci Rep ; 14(1): 7040, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575597

RESUMEN

Whole lung engineering and the transplantation of its products is an ambitious goal and ultimately a viable solution for alleviating the donor-shortage crisis for lung transplants. There are several limitations currently impeding progress in the field with a major obstacle being efficient revascularization of decellularized scaffolds, which requires an extremely large number of cells when using larger pre-clinical animal models. Here, we developed a simple but effective experimental pulmonary bioengineering platform by utilizing the lung as a scaffold. Revascularization of pulmonary vasculature using human umbilical cord vein endothelial cells was feasible using a novel in-house developed perfusion-based bioreactor. The endothelial lumens formed in the peripheral alveolar area were confirmed using a transmission electron microscope. The quality of engineered lung vasculature was evaluated using box-counting analysis of histological images. The engineered mouse lungs were successfully transplanted into the orthotopic thoracic cavity. The engineered vasculature in the lung scaffold showed blood perfusion after transplantation without significant hemorrhage. The mouse-based lung bioengineering system can be utilized as an efficient ex-vivo screening platform for lung tissue engineering.


Asunto(s)
Células Endoteliales , Trasplante de Pulmón , Animales , Humanos , Andamios del Tejido , Pulmón/irrigación sanguínea , Ingeniería de Tejidos/métodos , Trasplante de Pulmón/métodos , Perfusión , Reactores Biológicos , Matriz Extracelular
14.
Appl Microbiol Biotechnol ; 108(1): 286, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578301

RESUMEN

Ultraviolet-C light-emitting diodes (UV-C LEDs) are an emerging technology for decontamination applications in different sectors. In this study, the inactivation of bacterial biofilms was investigated by applying an UV-C LED emitting at 280 nm and by measuring both the influence of the initial cell density (load) and presence of an extracellular matrix (biofilm). Two bacterial strains exposing diverging matrix structures and biochemical compositions were used: Pseudomonas aeruginosa and Leuconostoc citreum. UV-C LED irradiation was applied at three UV doses (171 to 684 mJ/cm2) on both surface-spread cells and on 24-h biofilms and under controlled cell loads, and bacterial survival was determined. All surface-spread bacteria, between 105 and 109 CFU/cm2, and biofilms at 108 CFU/cm2 showed that bacterial response to irradiation was dose-dependent. The treatment efficacy decreased significantly for L. citreum surface-spread cells when the initial cell load was high, while no load effect was observed for P. aeruginosa. Inactivation was also reduced when bacteria were grown under a biofilm form, especially for P. aeruginosa: a protective effect could be attributed to abundant extracellular DNA and proteins in the matrix of P. aeruginosa biofilms, as revealed by Confocal Laser Scanning Microscopy observations. This study showed that initial cell load and exopolymeric substances are major factors influencing UV-C LED antibiofilm treatment efficacy. KEY POINTS: • Bacterial cell load (CFU/cm2) could impact UV-C LED irradiation efficiency • Characteristics of the biofilm matrix have a paramount importance on inactivation • The dose to be applied can be predicted based on biofilm properties.


Asunto(s)
Biopelículas , Desinfección , Matriz Extracelular , Bacterias , Matriz Extracelular de Sustancias Poliméricas , Pseudomonas aeruginosa
15.
BMC Musculoskelet Disord ; 25(1): 282, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609896

RESUMEN

OBJECTIVE: Ferritin heavy chain 1 (FTH1) is an important subunit of ferro-storing proteins and is indispensable for iron metabolism. Though it has been extensively studied in numerous organs and diseases, the relationship between FTH1 and osteoarthritis (OA) is unclear. DESIGN: Primary murine chondrocytes and cartilage explants were treated with FTH1 siRNA for 72 h. Mice were injected with adenovirus expressing FTH1 after destabilized medial meniscus (DMM) surgery. These approaches were used to determine the effect of FTH1 expression on the pathophysiology of OA. RESULTS: FTH1 expression was down regulated in OA patients and mice after DMM surgery. Knock down of FTH1 induced articular cartilage damage and extracellular matrix degradation in cartilage explants. Further, over expression of FTH1 reduced the susceptibility of chondrocytes to ferroptosis and reversed decrements in SOX9 and aggrecan after DMM surgery. Moreover, FTH1 relieved OA by inhibition of the chondrocyte MAPK pathway. CONCLUSION: This study found FTH1 to play an essential role in extracellular matrix degradation, ferroptosis, and chondrocytes senescence during OA progression. Further, injection of adenovirus expressing FTH1 may be a potential strategy for OA prevention and therapy.


Asunto(s)
Osteoartritis , Animales , Humanos , Ratones , Adenoviridae/genética , Agrecanos , Condrocitos , Matriz Extracelular , Ferritinas , Osteoartritis/genética , Oxidorreductasas
16.
Crit Care ; 28(1): 120, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609959

RESUMEN

BACKGROUND: Sepsis is associated with high morbidity and mortality, primarily due to systemic inflammation-induced tissue damage, resulting organ failure, and impaired recovery. Regulated extracellular matrix (ECM) turnover is crucial for maintaining tissue homeostasis in health and in response to disease-related changes in the tissue microenvironment. Conversely, uncontrolled turnover can contribute to tissue damage. Systemic Inflammation is implicated to play a role in the regulation of ECM turnover, but the relationship between the two is largely unclear. METHODS: We performed an exploratory study in 10 healthy male volunteers who were intravenously challenged with 2 ng/kg lipopolysaccharide (LPS, derived from Escherichia coli) to induce systemic inflammation. Plasma samples were collected before (T0) and after (T 1 h, 3 h, 6 h and 24 h) the LPS challenge. Furthermore, plasma was collected from 43 patients with septic shock on day 1 of ICU admission. Circulating neo-epitopes of extracellular matrix turnover, including ECM degradation neo-epitopes of collagen type I (C1M), type III (C3M), type IV (C4Ma3), and type VI (C6M), elastin (ELP-3) and fibrin (X-FIB), as well as the ECM synthesis neo-epitopes of collagen type III (PRO-C3), collagen type IV (PRO-C4) and collagen type VI (PRO-C6) were measured by ELISA. Patient outcome data were obtained from electronic patient records. RESULTS: Twenty-four hours after LPS administration, all measured ECM turnover neo-epitopes, except ELP-3, were increased compared to baseline levels. In septic shock patients, concentrations of all measured ECM neo-epitopes were higher compared to healthy controls. In addition, concentrations of C6M, ELP-3 and X-FIB were higher in patients with septic shock who ultimately did not survive (N = 7) compared to those who recovered (N = 36). CONCLUSION: ECM turnover is induced in a model of systemic inflammation in healthy volunteers and was observed in patients with septic shock. Understanding interactions between systemic inflammation and ECM turnover may provide further insight into mechanisms underlying acute and persistent organ failure in sepsis.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Masculino , Lipopolisacáridos , Matriz Extracelular , Epítopos , Escherichia coli
17.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611696

RESUMEN

Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds ß-d-galactopyranose and ß-d-Glcp-(1→2)-d-Galp disaccharide through ß-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.


Asunto(s)
Colágeno , Glicosiltransferasas , Humanos , Animales , Glicosilación , Matriz Extracelular , Procesamiento Proteico-Postraduccional , Mamíferos
18.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612378

RESUMEN

Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling mediated by fibroblasts is dysregulated, in part by alterations to the regulatory and effector systems that synthesize and degrade collagen, and by alterations to the functions of the integrin-based adhesions that normally mediate mechanical remodeling of collagen fibrils. Cell-matrix adhesions containing collagen-binding integrins are enriched with regulatory and effector systems that initiate localized remodeling of pericellular collagen fibrils to maintain ECM homeostasis. A large cadre of regulatory molecules is enriched in cell-matrix adhesions that affect ECM remodeling through synthesis, degradation, and contraction of collagen fibrils. One of these regulatory molecules is Transient Receptor Potential Vanilloid-type 4 (TRPV4), a mechanically sensitive, Ca2+-permeable plasma membrane channel that regulates collagen remodeling. The gating of Ca2+ across the plasma membrane by TRPV4 and the consequent generation of intracellular Ca2+ signals affect several processes that determine the structural and mechanical properties of collagen-rich ECM. These processes include the synthesis of new collagen fibrils, tractional remodeling by contractile forces, and collagenolysis. While the specific mechanisms by which TRPV4 contributes to matrix remodeling are not well-defined, it is known that TRPV4 is activated by mechanical forces transmitted through collagen adhesion receptors. Here, we consider how TRPV4 expression and function contribute to physiological and pathological collagen remodeling and are associated with collagen adhesions. Over the long-term, an improved understanding of how TRPV4 regulates collagen remodeling could pave the way for new approaches to manage fibrotic lesions.


Asunto(s)
Matriz Extracelular , Canales Catiónicos TRPV , Membrana Celular , Uniones Célula-Matriz , Colágeno , Integrinas , Canales Catiónicos TRPV/genética , Humanos
19.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612536

RESUMEN

The endometrial epithelium and underlying stroma undergo profound changes to support and limit embryo adhesion and invasion, which occur in the secretory phase of the menstrual cycle during the window of implantation. This coincides with a peak in progesterone and estradiol production. We hypothesized that the interplay between hormone-induced changes in the mechanical properties of the endometrial epithelium and stroma supports this process. To study it, we used hormone-responsive endometrial adenocarcinoma-derived Ishikawa cells growing on substrates of different stiffness. We showed that Ishikawa monolayers on soft substrates are more tightly clustered and uniform than on stiff substrates. Probing for mechanical alterations, we found accelerated stress-relaxation after apical nanoindentation in hormone-stimulated monolayers on stiff substrates. Traction force microscopy furthermore revealed an increased number of foci with high traction in the presence of estradiol and progesterone on soft substrates. The detection of single cells and small cell clusters positive for the intermediate filament protein vimentin and the progesterone receptor further underscored monolayer heterogeneity. Finally, adhesion assays with trophoblast-derived AC-1M-88 spheroids were used to examine the effects of substrate stiffness and steroid hormones on endometrial receptivity. We conclude that the extracellular matrix and hormones act together to determine mechanical properties and, ultimately, embryo implantation.


Asunto(s)
Matriz Extracelular , Progesterona , Femenino , Humanos , Epitelio , Ciclo Menstrual , Estradiol
20.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612740

RESUMEN

Tissue fibrosis is characterized by the excessive accumulation of extracellular matrix in various organs, including the lungs, liver, skin, kidneys, pancreas, and heart, ultimately leading to organ failure [...].


Asunto(s)
Matriz Extracelular , Hígado , Humanos , Muerte Celular , Corazón , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...